Spectrophotometric characterization of Interstellar Comet 2I/Borisov before perihelion passage George P. Prodan ¹ , Marcel Popescu ² , Javier Licandro ^{3,4} , Mohammad Akhlaghi ^{3,4} , Julia de León ^{3,4} , Eri Tatsumi ^{3,4,5} , Bogdan Adrian Păstrav ⁶ , Jacob M. Hibber ⁷ , Ovidiu Văduvescu ^{3,7,8} , Gabriel Nicolae Simion ^{1,2} , Enric Pallé ^{3,4} , Norio Narita ^{3,5,9} , and Felipe Murgas ^{3,4} . ¹ Faculty of Physics, University of Bucharest, 405 Atomistilor str., Māgurele 077125, Ilfov, Romania ² Astronomical Institute of the Romanian Academy, 5 Cutitul de Argint, 040557 Bucharest, Romania ³ Astronomical Institute of the Romanian Academy, 5 Cutitul de Argint, 040557 Bucharest, Romania ³ Instituto de Astrofísica (ULL), E-38205, La Laguna, Spain ⁴ Departamento de Astrofísica (ULL), E-38205, La Laguna, Spain ⁹ University of Tokyo, Tokyo, Japa ⁹ Institute of Space Science, Atomistilor 409, 077125, Bucharest-Māgurele, Romania ¹ Isaac Newton Group of Telescopes (ING), Apto. 321, E-38700 Santa Cruz de la Palma, Canary Islands, Spain ⁸ Reculty of Sciences, University of Craiova, Craiova, Romania ⁸ Astrobiology Ctr. and Japan Science and Technology Agency (Japan)	Introduction	Methods 00	Results 0000	Conclusions O	References
	George P. Prodan ¹ Jacob M. Hibbert ⁷ , O ¹ Faculty of Physics, Unive ² Astronomical Institute of ³ Instituto de Astrofísica d ⁴ Departamento de Astrofí ⁵ University of Tokyo, Toky ⁶ Institute of Space Science ⁷ Isaac Newton Group of T ⁸ Faculty of Sciences, Univ ⁹ Astrobiology Ctr. and Jap	Spectrophotometric Comet 2I/Boris , Marcel Popescu ² , Javier Licandro ^{3,4} , Vidiu Văduvescu ^{3,7,8} , Gabriel Nicolae rsity of Bucharest, 405 Atomiștilor str., Măgure the Romanian Academy, 5 Cuțitul de Argint, C e Canarias (IAC), C/Vía Láctea s/n, E-38205, I isica (ULL), E-38205, La Laguna, Spain 70, Japan 2e, Atomiștilor 409, 077125, Bucharest-Măgure felescopes (ING), Apto. 321, E-38700 Santa Cu versity of Craiova, Craiova, Romania can Science and Technology Agency (Japan)	C characterizat ov before peril Mohammad Akhlaghi ^{3,4} , Ju Simion ^{1,2} , Enric Pallé ^{3,4} , No ele 077125, Ilfov, Romania 040557 Bucharest, Romania La Laguna, Spain	ion of Interstell belion passage	ar Bogdan Adrian Păstrav ⁶ , gas ^{3,4}

Presenter: George P. Prodan E-mail: prodangp9@gmail.com

Introduction	Methods	Results	Conclusions	References
●00	00	0000	0	0000
Interstellar	Compt 21/R	oricov		

Motivation

- Is the exchange of materials between two different planetary systems possible?
- How does this interstellar comet behave in the vicinity of the Sun?
- Are the interstellar objects comparable to the ones from our solar system?

Related work

- According to several studies, 21 is very similar to the Solar System comets
- High resolution imaging: r_n = 0.2 0.5 km
 [Jewitt et al., 2019]
- Dust production rate estimations:
 - ✤ 30 kg/s (Sep) Fitzsimmons et al. 2019
 - ✤ 35 kg/s (Nov) Cremonese et al. 2020
 - ✤ 52 kg/s (late Sep) León et al., 2019
 - 200 kg/s (early Dec) Yang et al. 2021

Our contribution

- Simultaneously photometry in four bands (g,r,i,z_s)
- Monitored the color indices and scattering crosssection during an interval of 2 months
- Applied a dust production model for our data

Introduction	Methods	Results	Conclusions	References
000	00	0000	0	0000
	- L			

Comet trajectory

Figure 1: The comet location on its hyperbolic trajectory in the first night (3rd Oct. 2019) and the last night (13th Dec. 2019) of observations. The images were created using NASA JPL Small-Body Database Browser.

Figure 2: Composed Image of 2I/Borisov obtained using TCS in g, r, i bands (2- Nov. 2019)

perihelion distance	eccentricity	perihelion time	inclination	excess velocity
$q (\mathrm{AU})$	e	t_p	$i \ (deg)$	$v_{\infty} \ (\rm km/s)$
2.006581	3.35621	2019-Dec-08.5450	44.052570	32.2822

Table 1: Orbital parameters of 2I/Borisov retrieved from JPL Small-Body DatabaseBrowser and velocity excess from [J. De León et al. 2019]

Introduction	Methods	Results	Conclusions	References
000	00	0000	0	0000

Instrumentation

- 2I/Borisov Observations Sep - Dec 2019
- Teide Observatory
 Canary Islands
- 1.52 m Cassegrain auto-guiding system, remote

Figure 3: Transmittance as a function of wavelength for MuSCAT2 filters. Source: [Narita et al., 2019].

- Cassegrain focus (1)
- CCD cameras g, r, i, z_s(2-5)

Introduction	Methods	Results	Conclusions	References
000	0	0000	0	0000

Data reduction

Table 2: Observations log

Obs Night	Frames	r (AU)	Δ (AU)
2019-10-03	91	2.485	2.974
2019-10-04	55	2.472	2.953
2019-10-05	104	2.460	2.932
2019-10-07	83	2.435	2.891
2019-10-12	109	2.374	2.790
2019-10-13	100	2.362	2.770
2019-10-14	89	2.351	2.751
2019-10-15	62	2.339	2.731
2019-11-01	84	2.171	2.424
2019-11-02	137	2.162	2.408
2019-11-07	83	2.123	2.330
2019-11-10	63	2.102	2.286
2019-11-22	31	2.039	2.133
2019-12-10	29	2.006	1.984
2019-12-13	25	2.009	1.969

Calibration steps

2.2 - 1.5 air masses

1. astrometric calibration

Gaia Data Release 2

2. photometric calibration

Pan-STARRS catalogues

3. finding the zeropoint

Processed data: 15 nights Need post-processing: 9 nights Software: Photometry Pipeline – PP [Mommert, M. 2017]

Figure 4: Composite r-band image (83 frames, 7 Oct) created with PP

Figure 5: Light-curve outliers due to background sources

Minutes after 2019-11-04 05:26 UT

of particle size according to Mie theory

Introduction	Methods 00	Results ●000	Conclusions O	References
Morphology				

Figure 10: Comet profile extracted by NoiseChisel tool of GnuAstro library [M. Akhlaghi and T. Ichikawa, 2015] on 2 Novemver

Figure 8: Multi-band photometry images

Figure 9: Normalized surface brightness of the comet and reference star

Introduction	Methods	Results	Conclusions	References
000	00	0●00	O	
Color indices				

Figure 12: The color diagram r – i vs g – r of 2I, active comets [M. Solontoi et al., 2012] and Trans-Neptunian objects of the Solar System [Eran O. Ofek, 2012]

Figure 11: 2I/Borisov color indices as a function of time.

Introduction	Methods	Results	Conclusions	References
000	00	0000	0	0000

Outburst

When computing the total effective scattering cross-section: $p_V = 0.1$ (geometric albedo) 15,000 km aperture

Figure 14: The comet images in r-band during the mini-outburst after overcoming the water-ice line at 2.5 AU

Introduction	Methods	Results	Conclusions	References
	00	000●	O	0000

Dust production rate

Figure 15: The mass of dust in coma as a function of time

Table 3: Dust production properties for2I/Borisov during pre-perihelion stage

Mass of dust ejected during the mini-outburst	5.3 \pm 1.0 (× 10 ⁸ kg)
Dust production range	197 – 266 kg/s
Dust production peak	7 Oct 2019
Relaxation half-life	4.6 ± 2.3 days
Mass loss	-110 ± 30 kg/s

UT Date 2019

Introduction	Methods	Results	Conclusions	References
000	00	0000	\bullet	0000

Conclusions and further work

Conclusions

- The comet is ejecting dust having a tail of approximately 40R $_\oplus$ (2 Nov 2019)
- The profile indicates that 2I is a diffuse object, typical for a Solar System comet.
- The brightness starts to decrease, in the middle of November, 2 weeks before the perihelion passage
- Color indices suggest that 2I/Borisov is a reddish comet that resembles with the active comets and Trans-Neptunian objects of our solar system.

Further work

- Processing the remaining nights
- Propose a solution for saving the frames in which there is an overlapping with background sources

Animation: First attempts in correcting the overlap of the background sources